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Abstract 

We establish new global results for a higher order Schrödinger equation. 
We show that solutions of the equation can be extended globally in 
Sobolev spaces of order ,53>s  the method was introduced by Bourgain 

[1] and used in several models. 

1. Introduction 

In this paper we will describe global well-posedness for solutions of 
the initial value problem (IVP) 
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where u is a complex valued function and a, b and e are real parameters 
with .0≠be  

The equation above is a particular case of the IVP introduced by 
Hasegawa and Kodama [13, 16], 
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to study the propagation of pulses where higher dispersive effects than 
those one of the Schrödinger equation were taking in consideration. 

Notice that depending of the values of the parameters ,,,, dba γ  and 
e, the equation in (1.2) reduces to either the cubic Schrödinger equation 

,022 =+∂+∂ uucuui xt  

or the derivative nonlinear Schrödinger equation 

,0222 =∂+∂+∂+∂ ueuuuduiu xxxt  

or the complex modified Kortweg-de Vries equation 

.023 =∂+∂+∂ uuduu xxt  

These equations are well known nonlinear dispersive equations and have 
been broadly studied in recent years. 

Let ( ) baedc 3−=  and ( )txu ,  be a solution of (1.2). Define 
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then ( )txv ,  is a solution of the equation 

.0223 =∂+∂+∂+∂ vevvvdvbv xxxt  (1.4) 

So the transformation (1.3) takes solutions of the equation in (1.2) in 
solutions to a complex modified Korteweg-de Vries type equation. 
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Regarding the study of well-posedness for the IVP (1.2), several 
works have been devoted to this subject, we can mention the works of 
Laurey [17], Staffilani [22], and Carvajal [2]. In best local result obtained 
so far is due to Staffilani [22]. She proved that for data in 

( ) ,41, ≥sH s R  the IVP (1.2) is locally well-posed. 

In [17] it was shown that the flow associated to the IVP (1.2) leaves 
invariant on time the following quantities 

( ) ( )∫=
R

,,2
1 dxtxvvJ  

( ) ( ) ( )∫ ∫+∂=
R R

dxtxvcdxtxvcvJ x ,, 4
2

2
12  

( ) ( )∫ ∂+
R

,,,Im3 dxtxvtxvc x  

where ( ) 2,03 21 deecbec +−=≠=  and ( ).33 deabcc +−=  These 
quantities were used in [17] to establish global well-posedness for (1.2) in 

( ) .1, ≥sH s R  

Recently when 0≠be  for the IVP (1.2), Wang [26] proved global 

well-posedness in ( )RsH  for .76>s  Carvajal using techniques of 
Colliander et al. [6, 7, 8] (almost conserved quantities and I-method as in 

[8, 26]) obtained in [3] a sharp global well-posedness result in ( )RsH  for 
41>s  under the condition 

( ) ( ) .0,3 ≠−=γ bebeda  (1.5) 

Here we prove the global well-posedness for the IVP (1.1) in ( ),RH s  
,53>s  using Bourgain’s technique as in [9]. Observe that if ,0≠a  

then (1.1) does not satisfy the condition (1.5) because that in this case is 
0=γ  and .0≠−= ed  Therefore our result is new in the literature and 

better that the global well-posedness result obtained in [26]. 

Note that (1.1) conserves the following quantities: 
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We do not know whether or not the approach in [6, 7, 8] can be applied in 
this case to go all the way to .41≥s  

The local result we will use is due to Staffilani [22], it reads as the 
following. 

Theorem 1.1. Let ( ) ,41,0 ≥∈ sHu s R  and ,0,, ≠∈ bba R  edc ,,  

,C∈  then there exist 

{ }38
0

4
0 4141 ,min −−≤∆

HH
uuCT  (1.7) 

and a unique solution of the IVP (1.2), such that 

([ ] ( )),;,0 RHTu s∆∈ C  (1.8) 

,22 ∞<∂+∂
∆

∞
∆

∞
TxTx LLx

s
xLLx uDu  (1.9) 

,252041 ∞<∂
∆

−
Tx LLx

s
x uD  (1.10) 

,105105 ∞<+
∆∆ TxTx LL

s
xLL uDu  (1.11) 

,4 ∞<∞
∆TxLLu  (1.12) 

.8888 ∞<+
∆∆ TxTx LL

s
xLL uDu  (1.13) 

Moreover, for any [ ]TT ∆∈′ ,0  there exists a neighborhood V  of 

( ) ,41,0 ≥∈ sHu s R  such that the map ( ),~~
0 tuu →  from V  into the 

class defined by (1.8)-(1.13), with T ′  instead of T∆  is smooth. 

Our aim in this paper is to extend the local solution from the 
Theorem 1.1 to a global one. Now, we state our main theorem of global 
existence: 

Theorem 1.2. Let ,53>s  then for any ( )RsHu ∈0  the unique 
solution of the IVP (1.2) given by Theorem 1.1 extends to any interval 
[ ].,0 T  In addition, 
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where ( )sHucc 011 =  and ,0 s≤θ≤  moreover 

( ) ( ) ( ),0 tutUtu ω+=  

where ( )tU  is the unitary group associated with the linear part of (1.1), 
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Notation. The notation to be used is mostly standard. We will use 

the space-time Lebesgue space q
T
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x LL  endowed with the norm 
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The notation BA   means there exist a constant C such that ,CBA ≤  

and BA ~  means BA   and .AB   

2. Linear Estimates 

In this section we will present the linear estimates we need to obtain 
our global results. Some of these linear estimates were already 
established somewhere else and so we will give the references. 

We consider the linear problem 

( ) ( )



=
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0

32

xuxu
txubuiau xxt R  (2.1) 

whose solution is given by the unitary group ( ){ }tU  defined via the 
Fourier transform as 

( ) ( ) ( ) ( )∫ ξξ= ξ+ξ+ξ

R
.ˆ00

32
duexutU ixtbai  (2.2) 

For ( )xu0  in ( ) [ ),1,41, ∈sH s R  we write 
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where N is a large number to be chosen later. We notice that by the 

definition (2.3) the both data j
j HHv ∞
=

∞ =∈ 10 : ∩  and ,0
sHw ∈  satisfy 

22 00 LL uv ≤  

( ) ,,1
00 sNuv s

HH s ≥δ≤ −δ
δ  (2.4) 

and 

( ) .0,00 sNuw s
HH s ≤ρ≤≤ −ρ

ρ  (2.5) 

Then to 0v  and 0w  we associate the IVP’s 
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where ( ) ,22 gegggegF xx ∂+∂−=  and 

( ) ( ) ( ) [ ( ) ( )wvewwvevwvevFwvFwvG xxx ℜ∂+ℜ∂+∂−=−+= 22:, 2  

] [ wvwvwvvwewwvw xxxxx ∂+∂+∂+∂+∂+ 222 22  

].22 wwvw xx ∂+∂+  (2.8) 

The solution of IVP (2.6) is given by 

( ) ( ) ( ) ( ) ( )∫ ′′′−−=
t

tdtvFttUvtUtv
0

0  (2.9) 

with ∞∈ Hv  (see Theorem 1.1). This solution is defined for any given 
time ,0>T  in particular it is defined in the interval of time [ ].,0 T∆  
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Proposition 2.1. Let ,0
ρ∈ Hw  with sNw s

H ≤ρ≤−ρ
ρ 41,0   

δ≤< s,1  and v the unique solution given by Theorem 1.1. Then there 

exists a unique solution w of the IVP (2.7) defined in the same interval of 

existence of [ ] ( )sNTTv −−∆∆ 1~,,0,  such that 

([ ] ( )).;,0 Rρ∆∈ HTw C  

Proof. The proof follows the same argument as in [15], see [9]. 

The Theorem (2.1) shows that the IVP 2.7 is locally well-posed in ρH  
and it is given by 

( ) ( ) ( ) ( ) ( ) ( ) tdtwvGttUxwtUtw
t

′′′−−= ∫ ,
0

0  

( ) ( ) ( )tzxwtU += 0  (2.10) 

in the interval of time [ ].,0 T∆  Therefore, 

( ) ( ) ( ) ( ) [ ].,0,0 TtwtUtztvtu ∆∈++=  (2.11) 

The following lemma establishes the smoothing effect of Kato’s type and 
its dual version and it allows us to estimate the nonlinear term without 
using Leibnitz rule for fractional derivatives as in [9], [10]. 

Lemma 2.2. If ( ) ( ) .10,, 2
0

2
0 ≤θ<∈∈ θ RR LvDLu  Then 

( ) ( ) ,22 00 LLLx uCxutU
Tx

≤∂ ∞  (2.12) 

( ) ( ) .222 0
2

0 LLLx vDCTxvtU
Tx

θθ≤∂ θ  (2.13) 

Proof. To the proof of (2.12), see [22] or [2], and (2.13) follows using 
complex interpolation between (2.12) and the inequality 

( ) ( ) .222 0
21

0 LLL uTxutU
Tx

≤  (2.14) 

Now, using Lemma 2.2 we obtain some interpolated estimates. 

Lemma 2.3. Let .10 ≤θ<  If ( ) .212
Tx LLf θ+∈  Then 
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( ) ( ) ( ) ( ) ., 212
2

21
0 Tx

xT
LL

LL

t
x fCTtdtfttUD θ+

∞
θ−θ ≤′′⋅′−∫  (2.15) 

Proof. The Minkowski inequality, group properties and the Cauchy-
Schwarz inequality give 

( ) ( ) ., 22
2

21
0 Tx

x
LL

L

t
fCTtdtfttU ≤′′⋅′−∫  

This estimate and version dual of (2.12) combined with Stein’s analytic 
interpolation give us (2.15). 

Next we have the estimates associated to the maximal function norm. 

Lemma 2.4. If ,10,43,0 <<>∈ TsHu s  then 

( ) .00 2 s
Tx HLL uCutU ≤∞  (2.16) 

If ,41
0 Hu ∈  then 

( ) .414 00 HLL uCutU
Tx

≤∞  (2.17) 

If ( ) ,1010,421
0 <<≤θ≤∈

+θ+ TandHu  then 

( ) ( ) ( ) .42114 00 +θ+∞θ+ ≤ HLL uCutU
Tx

 (2.18) 

Proof. The estimate (2.16) was proved in [17]. Inequality (2.17) was 
obtained by Staffilani in [22], (see also [2]). To show (2.18) we use (2.16), 
(2.17) and analytic interpolation. 

We also need to establish Strichartz estimates for solutions of IVP 
(1.2). The following lemma was proved in [2] 

Lemma 2.5. If ,2
0 Lu ∈  then 

( ) .288 00 xTx LLL uCutU ≤  (2.19) 

We also need the estimates established in [22] reminiscence of those for 
the modified KdV equation. 

Lemma 2.6. If ,~, 2
0

41
0 LuDu x ∈  then 
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( ) ,2105 00 xTx LLL uCutU ≤  (2.20) 

( ) .~~ 22520 0
41

0 xTx LxLLx uDCutU ≤∂  (2.21) 

Now, we state a result of interpolation which allows us to handle the 
term .wvvx  

Lemma 2.7. Let ,,141 2
0 LuD ∈≤θ≤ θ  then 

( ) ( ) .22532040 0
812

0 xTx LLLx uDCTutUD θ−θ≤−θ  (2.22) 

Proof. Interpolating the effect of local regularization (2.12) with the 
maximal function estimative (2.17), for 10 ≤θ≤  we have that 

( ) ( ) .245105 00 xTx LLLx uDCutUD θ≤θ−θ  (2.23) 

Now, we interpolate (2.23) with (2.13) to obtain (2.22), because if 
( )θ−=λ 411  we have 

( ) .51240
320 θλ−+θλ=−θ  

( ) .10
4512

1
5
2 θ−λ−+λ=  

This completes the proof. 

To prove Theorem 1.2 we need the following result 

3. Estimatives Norms 

Notice that we have added the norms in (1.13) to the original set of 
norms in [22] to avoid further difficulties. In what follows we consider N 
as a large enough positive number, which will be chosen later. We define 

( ) ∞
∆∆

∞
∆

∞β∞
∆

φ+φ∂+φ∂+φ=φ ββ
TxTxTxT LLLLxLLxxHL Dh 222:  

882520105105 41
TxTxTxTx LLLLxxLLLLx DD φ+φ∂+φ+φ+

∆∆∆

−ββ  
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,88
TxLLxD φ+ β  

( ) 2520241 41:
TxTxT LLxLLxxHL Dg

∆∆
∞∞

∆
φ∂+φ∂+φ=φ  

1051054 41
TxTxTx LLLLxLL D

∆∆
∞
∆

φ+φ+φ+  

,88882 41
TxTxTx LLxLLLLx D

∆∆∆
∞ φ+φ+φ∂+  

( ) .: 1058822
TxTxTxxT LLLLLLxLLf

∆∆∆
∞∞

∆
φ+φ+φ∂+φ=φ  

Lemma 3.1. Suppose that v and w solutions of the IVP’s (2.6) and 
(2.7) with initial data 00 , vw  respectively. Let [ ],1,0,141 ∈δ<≤ρ≤ s  

( ),: whw ρ
ρ =  ( ) ( ) ( ),:,:,: 4141 vgvwgwvhv === δ

δ  

( ),:0 wfw =  ( ),:0 vfv =  then 

( ) ( )
,,

14
1

041
1

0 41
s

H
s

H CNvCvCNvCv
−−δ

δ ≤≤≤≤ δ  

CvCv L ≤≤ 200  

and 

( ) 




 −

−ρ
ρ ≤≤≤≤ ρ

s
H

s
H CNwCwCNwCw 4

1

0410 41,  

.200
s

L CNwCw −≤≤  

Proof. The proof of these inequalities is the same as in [9] 

Lemma 3.2. If v is a solution of PVI (2.6) in [ ],,0 T∆  then, for ∈θ  

[ ] [ ]1,41,1,0 ∈µ  

.222 θ
θ∆≤∂

∆
θ vTCv

Tx LLx  (3.1) 

( ) .8122532040 µ
−µ∆≤∂

∆
−µ vTCv

Tx LLx  (3.2) 

If ,1<∆T  
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( ) ( ).24114 +∞
∆

θ+ θ+≤ vCv
Tx LL  (3.3) 

Moreover, we have that the solution w of PVI (2.7) satisfies, 

.222 θ
θ∆≤∂

∆
θ wTCw

Tx LLx  (3.4) 

( ) .8122532040 µ
−µ∆≤∂

∆
−µ wTCw

Tx LLx  (3.5) 

If ,1<∆T  one has 

( ) ( ).24114 +∞
∆

θ+ θ+≤ wCw
Tx LL  (3.6) 

Proof. To prove (3.1) we use (2.13) and the integral formula for v 

(2.9). Let θ= HvCa 02  and T∆  such that ( ) 211 24121 ≤∆+∆ aTT  

for ,av ≤θ  thus we obtain (see the Theorem 1.1 in [22], see also [2]) 

( ) 341212
0

2 122 θ
θθ ∆+∆∆+∆≤∂ θ

∆
θ vTTTCvTCv HLLx Tx

 

.22
θ

θθ ∆+∆≤ θ∞
∆

vTCvTC HL T
 

This proves (3.1). 

The other inequalities are obtained analogously by using the inequalities 
(2.22) and (2.18) of Lemma 2.7 and Lemma 2.4 respectively. 

Proposition 3.3. Define 

( ) ( ) ( ) ( )∫ ′′′−−=
t

tdtvwGttUtz
0

,,  

where ( )vwG ,  is the same as in (2.8), with v and w solutions of the IVP’s 

(2.6) and (2.7) respectively, with intial data 0v  and 0w  as in (2.3). Then 

for [ ],41,0∈δ  153 << s  we have 
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2 
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
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
 


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
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∞
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s
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.2 s
LL Nz

T
−

∞
∆

  (3.7) 
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Proof. The terms that contain v are more difficult to limit than those 
which contain w because the triple norm of v are limited by positive 
potencies of N, and those w by negative potencies of N. We consider the 

worst term, xx vvwwv ,2  and also ., 22
xwwwwi  Using (2.15) and the 

Lemmas 3.1 and 3.2 we have 
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Using (2.15), the Lemmas 3.1 and 3.2 we have 
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We also have 
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2
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∆
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Now we prove (3.7) for the worst terms 
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x wvTCtwdvttU

∆∞
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( ) ( ) sss NNCN −−−−≤ 121121  

,sCN −≤  

and 

( ) 22
2

2
1

0 Tx
T

LLx
LL

t
x vvwTCtdvvwttU

∆∞
∆
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2442
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∞∞
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∞
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Remark 3.4. If ,141 <δ≤≤ s  then ( ) .12
312

3
δ−






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


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
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≤ ss
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4. Proof of Theorem 1.2 

Proof. Let 0>T  and ,53 s<  we will prove that u, solution of PVI 

(1.2) is globally well-posed in .sH  

To extend the local solution as far as T, we follow the scheme: 

From (2.11), we have 

( ) ( ) ( ) ( ) .0wTUTzTvTu ∆+∆+∆=∆  

Let ( ) ( ) ( ) ( ) [ ],,0,:,:
00

Tttztztvtv ∆∈==  we defined our new initial data by 

( ) ( )TzTvv ∆+∆=
00

1  and ( ) .01 wTUw ∆=  (4.1) 

Obviously 1w  satisfies (2.5). By interpolation, conserved quantities (1.6) 

and Proposition 3.3, 1v  satisfies (2.4), therefore we can extend our local 

solution ( )tu  until T∆2  and for [ ]Tt ∆∈ ,0  we have 
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( ) ( ) ( )twtvTtu
11

+=∆+  

( ) ( ) ( ) ,1
11

wtUtztv ++=  (4.2) 

where 
1
v  and 

1
w  are solutions of the IVP (2.6), (2.7) with initial dates 1v  

and ,1w  respectively. 

In time T∆2  repeat the process. We define by induction 

( ) ( ) ( ) ( )( ) ,1, 011 wTkUwTUwTzTvv kk
kk

k ∆+=∆=∆+∆= ++  (4.3) 

where ( ) ( ) [ ]Tttwtv
kk

∆∈ ,0,,  satisfy the IVP (2.6), (2.7) with initial dates 

kv  and ,kw  respectively, and for [ ]Tt ∆∈ ,0  

( ) ( ) ( ) ( )∫ ′′′−−=
t kkk

tdtwvGttUtz
0

.,  (4.4) 

We will prove that for TTnnk ∆≈= ,...,,2,1  

∑
−

=

− ≤+≤+ ∞
∆

1

0
0

2
0

0
0 ,222

k

j

s
LL

j
L cNkccczv

T
 (4.5) 

( ) ( )∑
−

=

−−− ≤+≤+ ∞
∆

1

0

1
02

5
2
3

2
0

10
0 ,211

k

j

sss
HL

j
H NcNkccNczv

T ��  (4.6) 

and 

( ) [ ],1,0,1
0 ∈δ≤ −δ

δ
s

Hk Ncv �  (4.7) 

where .2 00 sHuc =  Observe that in the inequalities (4.5) and (4.6), the 

second inequality is true. In fact we have 

,2
5

2
3

2
02

5
2
3

2
0

ss
NccT

TNkcc
−−







∆

≤  

then the second inequality in (4.6) is true if 
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( ),2
102

5
2
3

2
0

ss
NcNccT

T −−
=






∆

 

this implies 

,2
1 2

5
2
3

0

s
NccT

+−
=  and .53>s  

In the second inequality in (4.5) we have 

2
1

2
1

02
0

12
5

2
3

0
2
0

2
0 22

1 −−−+−−− =≤





∆

≤
ssssss NcNccNNccNccT

TNkcc  

,2
0c

≤  

therefore the second inequality in (4.5) is also true. 

Now we will prove the inequalities (4.5)-(4.7) using induction. We 
consider the worst term, ,xvvw  and thus ( ) ., xvvwwvG =  

(1) If 1=k  

( ) ( ).
00

1 tztvv +=  

The inequality (2.4) and Proposition 3.3 imply 

.2 0
2
0

00
0 22 cNccczv s

LLL T
≤+≤+ −

∞
∆

 (4.8) 

( ) ( ),2
1

02
5

2
3

2
0

100
0 11 sss

HLH NcNccNczv
T

−−− ≤+≤+ ∞
∆

��  (4.9) 

by interpolation, definition of 1v  and conserved quantities (1.6) we get 

δδ−≤δ 12 1
1

11 HLH vvv ��  

( ( ) ) ( ( ) ) .1122
0

0
10

0
δδ− ∆+∆+≤ HHLL TzvTzv ��  

The inequalities (4.8) and (4.9) give 
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( ) ( ).1
0

1
0

1
01

ss
H NcNccv −δ−δδδ− ≤≤δ�  

(2) We suppose that the inequalities (4.5)-(4.7) are true for k, we will 
prove these inequalities for .1+k  

Let { },1,0∈ζ  by (4.4), Proposition 3.3, Lemma 3.1 and inequality 
(4.7), we obtain 

1053825320
40

2
1

TxTxTxT LL
k

LL
k

LLx
k

HL
k

wvvTcz
∆

∞
∆∆

−ζζ∞
∆

ζ−

∆≤�  

( ) 221 111
21

LkHkHk wvvTc −−−
ζ−

ζ∆≤ ��  

( ) ( ) ( ) sss NNNTcc −−−ζζ−∆≤ 1211212
0  

.2
312

3
2
0

s
Ncc






 ζ+−ζ

≤  (4.10) 

Using (4.3), conserved quantities (1.6), the inequalities (4.5), (4.6) and 
(4.10) we have 

( )∑
=

+ ζζζ ∆+≤
k

j
H

j
HHk Tzvv

0
01 ���  

ss
NccNkccc 






 ζ+−ζ






 ζ+−ζ

++≤ 2
312

3
2
0

2
312

3
2
0

0
2  

( )
s

Ncckc 





 ζ+−ζ

++≤ 2
312

3
2
0

0 12  

( ) .1,0,1
0 =ζ≤ −ζ sNc  (4.11) 

Therefore using interpolation and (4.11) 

δ
+

δ−
++ ≤δ 12 1

1
11 HkLkHk vvv ��  

( )sNcc −δδδ−≤ 1
0

1
0  

( ) [ ].1,0,1
0 ∈δ≤ δ−δNc  
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Hence u is globally well-posed in sH  for all .153 << s  

Now let, [ ] ,53,,0,0 >∈τ> sTT  then there exist [ ] ≈∈ nnj ,,0  
TT ∆  and [ ]Tt ∆∈ ,0  such that 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ,1 0wUtztvtwtvTjtuu
jjjj

τ++=+=∆−+=τ  (4.12) 

thus using interpolation, inequality (2.5), conserved quantities (1.6) and 
(4.5)-(4.7) 

( ) ( ) ( ) θθθθ ++≤τ HH
j

H
j

H wtztvu ���� 0  

( ) ( ) ( ) ( ) s
HH

j

L

j

H

j

L

j
Nutztztvtv s −θθθ−θθ− ++≤ ��� 0

11
1212  

( ) ( ) s
HH

j

L

j

HjLj Nutztzvv s −θθθ−θθ− ++≤ ��� 0
11

1212  

( ) s
H

s NuNc s −θ−θ +≤ �0
1

02  

( ) ( )
( ) ( ) ,352

03512
1 −θ−

−−θ +≤ ss
Hss

T
u

Tc
s�  

where ( )sHucc 011 =  and .0 s≤θ≤  

From inequality (4.12) we get 

( ) ( ) ( ) ( ) ( ) ,00 vUtztvuUu
jj

τ−++τ=τ  

therefore 

( ) ( ) ( ) ( ) ( )s
H

s
H

jj
NuNcvUtztv s −δ−δ +≤τ−+ δ

1
0

1
00 2 ��  

( ) ( ),3512
1

−−δ≤ ssTc  

where ( )sHucc �011 =  and .1≤δ≤s  
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