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Abstract

We establish new global results for a higher order Schriodinger equation.
We show that solutions of the equation can be extended globally in
Sobolev spaces of order s>3/5, the method was introduced by Bourgain

[1] and used in several models.
1. Introduction

In this paper we will describe global well-posedness for solutions of
the initial value problem (IVP)
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{atu +iadu + bdu — e u|?o.u + eu?0, = 0, x, t € R, 1)

u(x, 0) = ug(x),

where u 1s a complex valued function and a, b and e are real parameters
with be # 0.

The equation above is a particular case of the IVP introduced by
Hasegawa and Kodama [13, 16],

{@u +iad2u + bd3u + iyl u|Pu + dl u|?ou + eu®0,u = 0, x, t € R, (1.2)

u(x, 0) = ug(x),

to study the propagation of pulses where higher dispersive effects than

those one of the Schrédinger equation were taking in consideration.

Notice that depending of the values of the parameters a, b, vy, d, and

e, the equation in (1.2) reduces to either the cubic Schrédinger equation
o +02u+dulfu =0,
or the derivative nonlinear Schréodinger equation
oyu +i02u + d| u|*0,u + eu®d,u = 0,
or the complex modified Kortweg-de Vries equation
ou+03u+dlulfou = 0.

These equations are well known nonlinear dispersive equations and have
been broadly studied in recent years.

Let ¢ = (d — e)a/3b and u(x, t) be a solution of (1.2). Define

3 2
. a . a a
U(x, t) = exp[L%x + Lﬁtju(x + %t, t\J, (13)

then v(x, ¢) is a solution of the equation
P 3 2 24 = _
U+ boyv + d|v|“0,v + ev“0,v = 0. (1.4)

So the transformation (1.3) takes solutions of the equation in (1.2) in

solutions to a complex modified Korteweg-de Vries type equation.
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Regarding the study of well-posedness for the IVP (1.2), several
works have been devoted to this subject, we can mention the works of
Laurey [17], Staffilani [22], and Carvajal [2]. In best local result obtained
so far is due to Staffilani [22]. She proved that for data in

H?®(R), s > 1/4, the IVP (1.2) is locally well-posed.

In [17] it was shown that the flow associated to the IVP (1.2) leaves
invariant on time the following quantities

1) = [ Jof dx
Jo(v) = C1JR| OV |2(x, t)dx + C2J‘R| v (x, t)dx

+cg ImI u(x, ¢)0,v(x, t)dx,
R

where ¢; = 3be # 0, ¢y = —e(e +d)/2 and c3 = 3bc —ale +d). These
quantities were used in [17] to establish global well-posedness for (1.2) in

H®(R), s > 1.

Recently when be # 0 for the IVP (1.2), Wang [26] proved global
well-posedness in H*(R) for s > 6/7. Carvajal using techniques of
Colliander et al. [6, 7, 8] (almost conserved quantities and I-method as in
[8, 26]) obtained in [3] a sharp global well-posedness result in H*(R) for

s > 1/4 under the condition
y = a(d - e)/(3b), be = 0. (1.5)

Here we prove the global well-posedness for the IVP (1.1) in H®(R),
s > 3/5, using Bourgain’s technique as in [9]. Observe that if a # 0,

then (1.1) does not satisfy the condition (1.5) because that in this case is

vy =0 and d = —e # 0. Therefore our result is new in the literature and

better that the global well-posedness result obtained in [26].

Note that (1.1) conserves the following quantities:
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I,(v) = j v 2(x, t)dx, Iy(v) = j | 0,0 [2(x, t)dx. (1.6)
R R
We do not know whether or not the approach in [6, 7, 8] can be applied in
this case to go all the way to s > 1/4.

The local result we will use is due to Staffilani [22], it reads as the

following.

Theorem 1.1. Let uy € H*(R), s >1/4, and a,be R, b#0, c,d, e

e C, then there exist
AT < Cminflug |4, fuo |43} R

and a unique solution of the IVP (1.2), such that

u € C([0, AT]; H*(R)), (1.8)
lovlggs, +1DSalzps <o 19
||D;*1/4axu||LioL5A/jg < o, (1.10)
lulsgo +ID%ulgp < 1.1
lullag, < (112)
[ w ||L§LiT + ||D§u||L§LiT < oo, (1.13)

Moreover, for any T' e [0, AT] there exists a neighborhood V of
ug € H*(R), s > 1/4, such that the map gy — u(t), from V into the
class defined by (1.8)-(1.13), with T' instead of AT is smooth.

Our aim in this paper is to extend the local solution from the
Theorem 1.1 to a global one. Now, we state our main theorem of global
existence:

Theorem 1.2. Let s > 3/5, then for any ug € H*(R) the unique

solution of the IVP (1.2) given by Theorem 1.1 extends to any interval
[0, T]. In addition,
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_ 20(1-s)/(5s-3) . |l %o lgrs
(R% ”L‘[‘(j)’T]He <ql + 72s-0)/(55-3) ’

where ¢; = c¢1(| ug ||s) and 0 < 6 < s, moreover
ut) = Ut)ug + ot),
where U(t) is the unitary group associated with the linear part of (1.1),

S 28(1-s)/(5s—3
| w "LEB,T]Hb < ¢, T200-9)/(55-3)

where ¢; = ¢1(|ug ||gs), s <8 <1.

Notation. The notation to be used is mostly standard. We will use

the space-time Lebesgue space L2 LqT endowed with the norm

1/
o (Lo

The notation A < B means there exist a constant C such that A < CB,

and A ~ B means A < B and B < A.

£ ipzg, = 1oy

2. Linear Estimates

In this section we will present the linear estimates we need to obtain
our global results. Some of these linear estimates were already
established somewhere else and so we will give the references.

We consider the linear problem

) 3, _
{@u +iadyu +boyu =0, x, t € R, 2.1)

u(x, 0) = ug(x),

whose solution is given by the unitary group {U(¢)} defined via the

Fourier transform as

UOug(e) = [ e 05 ¢)az 22)

For uy(x) in H*(R), s € [1/4, 1), we write
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ug(x) = (xejenifio)” () + (xgenytio)” (x) = vo(x) + wo(x), (2.3)

where N is a large number to be chosen later. We notice that by the

definition (2.3) the both data vy € H” := ﬂcj’:lHj and wy € H®, satisfy
lvo llz2 < wo |2
lvo lgs < luo s N3O9), 8>, (2.4)
and
lwo llge < luo s NP, 0 <p<s. (2.5)

Then to vy and w, we associate the IVP’s

00 + iad2v + bddv + Fu) = 0, x, t € R, 2.6)
v(x, 0) = UO(x)7 .
and
P - A2 3 _
W+ 1adsw + boyw + Gv, w) =0, x, t € R, @7
w(x, 0) = wo(x), '

where F(g) = —€ g |28xg +eg20,5, and
G, w) == F(v +w) - F(v) = —¢[| v|*6,w + 26,vRe(viv) + 20 ,wRe(viw )
+w 20,0 + | w|?6,w] + e[20w0,T + 2000, + v20, W
+w?0,0 + w?o,w]. (2.8)
The solution of IVP (2.6) is given by

o0) = U - | ; Ut - ) F(o) (') de' 2.9)

with v € H® (see Theorem 1.1). This solution is defined for any given

time T' > 0, in particular it is defined in the interval of time [0, AT'].
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Proposition 2.1. Let wy € HP, with |wy |ge < N°7°,1/4<p<s
<1,s <6 and v the unique solution given by Theorem 1.1. Then there

exists a unique solution w of the IVP (2.7) defined in the same interval of

existence of v, [0, AT], AT ~ N9 such that
w e C([0, AT]; HP(R)).
Proof. The proof follows the same argument as in [15], see [9].
The Theorem (2.1) shows that the IVP 2.7 is locally well-posed in HP
and it is given by

t
w(t) = Ut)wo (x) - j U(t - )G, w)(t')de'
0

= U(t)wo(x) + 2(¢) (2.10)
in the interval of time [0, AT']. Therefore,
ut) = v(t) + 2(t) + U(t)wy, t € [0, AT]. (2.11)

The following lemma establishes the smoothing effect of Kato’s type and
its dual version and it allows us to estimate the nonlinear term without
using Leibnitz rule for fractional derivatives as in [9], [10].

Lemma 2.2. If ug € L2(R), D% € I2(R), 0 < 0 < 1. Then

[ 0,U(#)ug(x) ||L§OL2T < Clug |2, (2.12)
| 0:U()vo (@) 2702, < CT®?| D% | 2. (2.13)

Proof. To the proof of (2.12), see [22] or [2], and (2.13) follows using
complex interpolation between (2.12) and the inequality

| U@ () 22, < TV ug | 2. (2.14)

Now, using Lemma 2.2 we obtain some interpolated estimates.

Lemma 2.3. Let 0 < 0 < 1. Iff € L2/*O12 Then
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t -
H D[ U~ )f(~ ¢)dt HLW < TV flziasoz . (@15)

X

Proof. The Minkowski inequality, group properties and the Cauchy-
Schwarz inequality give

t ' N 740 1/2
HJOU(t—t)f(-,t)dt HL2 <cr'/ I 22z,

This estimate and version dual of (2.12) combined with Stein’s analytic

interpolation give us (2.15).

Next we have the estimates associated to the maximal function norm.

Lemma 2.4. If uy € H®, s > 3/4,0 < T <1, then
| U@)ug ||L§La:% < Clug [ gs- (2.16)
If ug € H'*, then

| U@uo Iz < Cluo lgi/s. @2.17)

Fuye HW2)/4 0 <9 <1and0 < T <1, then
| U@®)ug "L‘}C/(“(’)L‘% < Cllug || garzety/a. (2.18)

Proof. The estimate (2.16) was proved in [17]. Inequality (2.17) was
obtained by Staffilani in [22], (see also [2]). To show (2.18) we use (2.16),
(2.17) and analytic interpolation.

We also need to establish Strichartz estimates for solutions of IVP

(1.2). The following lemma was proved in [2]

Lemma 2.5. If u, < L%, then
100 lyszs, < Clluo 2 (219

We also need the estimates established in [22] reminiscence of those for
the modified KdV equation.

Lemma 2.6. If u, D,lc/4z70 e I2, then
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[ U@uo 510 < Cluo 2 (2.20)
| 000 [12053/2 < CIDY i 2. (2.21)

Now, we state a result of interpolation which allows us to handle the

term vv,w.
Lemma 2.7. Let 1/4 < 0 < 1, D% e L?, then
| DU@#)ug ||L§*C0/(209‘3)L§/2 < CT9/2_1/8||D6u0 "L%c (2.22)

Proof. Interpolating the effect of local regularization (2.12) with the
maximal function estimative (2.17), for 0 < 6 <1 we have that
| DLU®)uq ”L‘Z’C/GL;O/@“‘G) < C| D% "L?c (2.23)

Now, we interpolate (2.23) with (2.13) to obtain (2.22), because if
L =1-1/(46) we have

200-3 .0 0

= hg -1z
2 .1 5— 40
Zoag+-2)22

This completes the proof.

To prove Theorem 1.2 we need the following result
3. Estimatives Norms

Notice that we have added the norms in (1.13) to the original set of
norms in [22] to avoid further difficulties. In what follows we consider N

as a large enough positive number, which will be chosen later. We define

hP(9) = ¢ Iz, mp + ||D£5x¢||L§§L2AT tloxblzrz, + 10020,

-1/4
+ "DECI)”LiLlAOT +| ¢||L§CL1A°T +|DEY axd)"L?COL‘Z/TZ + ¢||L§L8T
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+ || D], 8 8
*OSrs,
— 1/4
860) =1 ¢l e+ DY/ axd)"Lj?LZAT [ 0x0 "L?coLi/q?
1/4
I olaz, + |0y dlzoo, + 1l
05 | = DY*
2w liziz, 10l + 1DV less

F@) = 10 lzyzz +10xb ez, +10lises, + 10009 -

Lemma 3.1. Suppose that v and w solutions of the IVP’s (2.6) and
(2.7) with initial data wq, vy respectively. Let 1/4 < p <s<1,8 €0, 1],

lwll, = 2P@), [lvlls =2 fwlyy = @), [v], = &)
llwllly == f@o), Mvllly = F(), then

1
~(1-
lolly < Cllvo s < CNY=), o], < Clog I s < CNT'

llolllo < Clvollzz <€

and

1
——s
lwll, < Clwy e < CN™), Jw ]y, < Cluwo |gys < CN(4 )

llwllly < Clwo 2 < CN7*.

Proof. The proof of these inequalities is the same as in [9]

Lemma 3.2. If v is a solution of PVI (2.6) in [0, AT], then, for 0 e
[0, 1], pn e [1/4, 1]

| oxvlpzrop2 < AT vl (3.1)
| 00 aorizou-a)372 < CATH/ 2 B .. (3.2)

If AT <1,
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vz, < Clvllajarer2) (3.3)
Moreover, we have that the solution w of PVI (2.7) satisfies,

| oxwlzropz, < CAT|w . (3:4)

2-1/8
| 920 | pg0/con-5173/2 < CATH/ 28w || . (3.5)
If AT <1, one has
| lparasorgz, < Cllwlly/ar00 2 (3.6)

Proof. To prove (3.1) we use (2.13) and the integral formula for v
(2.9). Let a = 2C||vy |yo and AT such that ATV2(1 + ATY*)a? < 1/2

for | v ||y < @, thus we obtain (see the Theorem 1.1 in [22], see also [2])

IN

|0 lzzioz, < CAT*|vg |l + CATO2ATY 21+ AT )0 |3

IA

CAT® 2o 0. o + CAT®2[ ]|y,

This proves (3.1).

The other inequalities are obtained analogously by using the inequalities
(2.22) and (2.18) of Lemma 2.7 and Lemma 2.4 respectively.

Proposition 3.3. Define
t
2(t) = —j U(t - )G(w, v) (¢')dt,
0

where G(w, v) is the same as in (2.8), with v and w solutions of the IVP’s
(2.6) and (2.7) respectively, with intial data vy and wqy as in (2.3). Then
for 8 € [0,1/4], 3/5 < s <1 we have

2 (.2))
|DRzllz, 2 = N {2 ?

)

| = "EZ)TLQ < N5, (3.7
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Proof. The terms that contain v are more difficult to limit than those
which contain w because the triple norm of v are limited by positive

potencies of N, and those w by negative potencies of N. We consider the
worst term, |v |2wx, vwv, and also i| w |2w, w?w,. Using (2.15) and the

Lemmas 3.1 and 3.2 we have

)
— 2
Tl Pl

5! 2
D3 j Ut - t')| v Pw, (¢')dt’
0

LYrL
_5
o, g,
iy
1-5
< CAT 2 o |2 ll 2 lly
4

< CN_(l_s)@_%j NZG%) =9 s

and

t
H Dﬁj Ut - t')owv, (¢')dt’
0

LR I?
-8

< AT Yy lypssapelo g 1o gt

=Y
< onr ? o Ml o 1y 2l e fllo

S
< CN7(1 )(2 QJNB(]. S)N2(1 S)

< CN{E_(H%) }
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Using (2.15), the Lemmas 3.1 and 3.2 we have

5
t - -
H DEJ. Ut -t w?w, (t')dt’ < CAT E w2, ||L1+5L2
0 I® L2
AT
_5
< CAT 2 |w || L2n | w ||L,§L2AT
15 5

= =2 2
< CAT 2 AT?||w |5l w "1/4

< CN_%(I _jN;[ S)NS s
< CN®.
We also have

-5
< CAT 2 Iw/? w||L1+8L2
L2pL

5! 2
ij Ut -t")| w | w')dt
0

1-5
8
<CAT 2 wpapg, lwlgssz oz,

7 9
< OATE 2wl glwl g, ol

con a2yl o

<CN%s,

Now we prove (3.7) for the worst terms

éU(t — 1) v |20 wdt’

IA

1
9 2
CaT2|| v Poyulyzz

L2pI?

1
CAT2| v |? d
vl A% | oxw iz,

IA
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< CN—]./Q(].—S)N]./Z(].—S)N—S

< CN~°%,

and

1

t L
H IO U(¢ - t"owv,dt’ < CAT 2| vwu, ”L?CLZAT

LXpL?

1

< T2 |0 I |0 g, |00 sz,

< CN—1/2(1—S)N1/4(1—S)Nl/4—s

< CN78.

F0B _ oms
Remark 3.4.1f 1/4 <s <85 <1, then N'2 U 2/ < NyU-9)3,

4. Proof of Theorem 1.2

Proof. Let T' > 0 and 3/5 < s, we will prove that u, solution of PVI
(1.2) is globally well-posed in H®.

To extend the local solution as far as T, we follow the scheme:
From (2.11), we have

u(AT) = v(AT) + 2(AT) + UAT )wy.
0 0
Let v(t) == v(t), 2(t) := z(¢), t € [0, AT], we defined our new initial data by

0 0
v; = v(AT) + 2(AT) and w; = UAT)wy. (4.1)

Obviously w; satisfies (2.5). By interpolation, conserved quantities (1.6)
and Proposition 3.3, v; satisfies (2.4), therefore we can extend our local

solution u(t) until 2AT and for ¢ € [0, AT] we have
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1 1
ut + AT) = v(t) + w(t)
1 1
=u(t)+ z(t) + U(t)wy, (4.2)

1 1
where v and w are solutions of the IVP (2.6), (2.7) with initial dates vy

and wq, respectively.

In time 2AT repeat the process. We define by induction
k k
Vps1 = VAT) + 2(AT), wyq = UAT)wy, = U((k +1)AT)wy, (4.3)

k k
where v(t), w(t), t € [0, AT] satisfy the IVP (2.6), (2.7) with initial dates
v, and wy, respectively, and for ¢ € [0, AT]

k : Bk
2(t) = -j LUt = )G, w)(¢)dt". (4.4)

We will prove that for k =1, 2, ..., n, n = T/AT

-1 j .
[vo |2 + ZHZHLOXTLQ < ?O + kccngs < ¢p, (4.5)
=0

k-1 j Co rrfls) 5 3.5, (1=s)

s s
lvo g2 + ;"Z"LZOTHI < 7N +kecgN2 27 < )N , (4.6)

and

log g5 < coN*@), 5 < [0, 1], 4.7)

where ¢ = 2| uq [s. Observe that in the inequalities (4.5) and (4.6), the
second inequality is true. In fact we have
5 3.5 T o 3.5
kecgN2 2 < (ﬁ)ccoNz 2

then the second inequality in (4.6) is true if
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3 53 c (1-s)
1 2a72°2° _ 0 1-s
(—AT)CCON o> N ,
this implies

3 5
2435
L N2 andss 35
2ccqy

In the second inequality in (4.5) we have

1

3 5 1
3.5 1,1
kec2N~° < (%)ccéN*S < 2clc N 22NN = 2N
0
< fo
2 )

therefore the second inequality in (4.5) is also true.

Now we will prove the inequalities (4.5)-(4.7) using induction. We

consider the worst term, vwv,, and thus G(v, w) = vwu,.

WIfk=1

0 0
vp = u(t) + 2(2).

The inequality (2.4) and Proposition 3.3 imply

0
lvo 2 + 2,2 <2+ cdN~° < . (4.8)
AT 2
0 Co n(los) . 2 nras (1-5)
[vo g1 + "Z"L‘ETHI < ?N +ccgN < ¢oN , (4.9)

by interpolation, definition of v; and conserved quantities (1.6) we get

1-8 8
lonllzs < Tor 2" lon [

< 0 T 1-8 . 0 TVt )
< (lvo Iz +12(AT)2) (I vo g2 + 12(AT)]| 2 )"

The inequalities (4.8) and (4.9) give
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v |l < h9edNO1-5) < o NO(-S),
(2) We suppose that the inequalities (4.5)-(4.7) are true for k, we will
prove these inequalities for & + 1.
Let ¢ € {0, 1}, by (4.4), Proposition 3.3, Lemma 3.1 and inequality
(4.7), we obtain

1-C p
2

40 k
< AT 2 Joxl|zoes 20l /35, [l 3 1o,

2l e

AT oy el vpy gzl wi |z

IN

cchT(l—C)/QNC(l—S)Nl/Q(l—S)N—S

IA

(4.10)

Using (4.3), conserved quantities (1.6), the inequalities (4.5), (4.6) and
(4.10) we have

ko j
lvo e + 2 2T
j=0

lvpsr lge <
]7
36 (1,38 88 (1,38
SC?O+kcc(2)N2 (+2)S+cc(%N2 [+2js
3 1+% s
< C?O+(k+1)cc§N2 ( 2j
< ¢oN%-8) ¢ =0, 1. (4.11)

Therefore using interpolation and (4.11)
1-8 )
oo lgs < B 1553 v I,
< SN

< ¢oN%1-%) 5 < [0, 1].
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Hence u is globally well-posed in H® for all 3/5 < s < 1.

Now let, T' > 0, t € [0, T], s > 3/5, then there exist j € [0, n], n ~
T/AT and t € [0, AT] such that

u(t) = u(t + (j —1)AT) = z];(t) + le.)(t) = é(t) + é(t) + U(t)wy, (4.12)

thus using interpolation, inequality (2.5), conserved quantities (1.6) and
(4.5)-(4.7)

j j
[ @ go < o@lgo +12@lgo +]wo g0

J 1-6 J 0 J 1-6 J 0 0—
< oI TN, + ORI, + 1o 7 N°

1-6 0 / 1-0 J 0 -
<o 5 Nos 1+ H=@ 2 2@, + 1w s N

IA

2¢oNO03) | g |35 NO°

20(1-s)/(5s-3) . |l %o llgs
al + 72-0)(55-3) ’

IA

where ¢; = ¢;(|ug |zs) and 0 < 6 < s.

From inequality (4.12) we get

u(t) = U(t)ug + ljj(t) + é(t) - U(1)vy,

therefore

IN

Jo(6) + 2(t) - U)o o < 266N + ug [ s N3)

IA

ClT26(1—s)/(5s—3)’

where ¢; = ¢(| ug [|s) and s <8 < 1.
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